您好,歡迎來(lái)到北京博普特科技有限公司!
Product center
利用Videometer多光譜成像系統構建的Radimax系統用于植物深根研究
前言:Videometer公司是多光譜成像系統生產(chǎn)商,開(kāi)發(fā)了系列多光譜成像設備如VideometerLab 4多光譜成像系統、VideometrMR根系多光譜成像系統、VideometerLiq固、液兩用多光譜成像系統并與丹麥歌本哈根大學(xué)聯(lián)合開(kāi)發(fā)了Radimax深根研究用多光譜成像系統,目前利用Videometer系統發(fā)表的文章已經(jīng)超過(guò)了250篇,是當前表型研究領(lǐng)域發(fā)表文章多、應用廣泛的多光譜成像系統。
摘要
背景: 根是植物的關(guān)鍵器官,要實(shí)現產(chǎn)量穩定,有效利用來(lái)自土壤資源至關(guān)重要。但作物基因型之間的根性狀表型變異多數還未知,田間根系發(fā)育篩查昂貴且耗力。因此,函待開(kāi)發(fā)在田間進(jìn)行全生長(cháng)植物根系性狀、特別是位于土壤深層的根系研究的新方法。
結果: 研究人員開(kāi)發(fā)了一種新型表型設施(RadiMax)用于在半田間條件下研究根系生長(cháng)以及土壤資源獲取。設施包括4個(gè)單元,每個(gè)單元面積為400m2,分別安裝有150根微根管,允許對0.4 m–1.8 m或 0.7 m–2.8 m土壤深度間隔的根進(jìn)行觀(guān)察。根系觀(guān)測通過(guò)多光譜微根光成像系統實(shí)現。植物生長(cháng)行與水分梯度垂直,設施安裝有多深度亞灌溉系統以及移動(dòng)雨棚。水梯度可實(shí)現將根觀(guān)測與冠層脅迫反應進(jìn)展相關(guān)聯(lián)。
結論:要驗證以上技術(shù)概念,選擇了栽培種春大麥 (Hordeum vulgare L.) ,種植在該系統中進(jìn)行為期兩季的研究。利用該系統可觀(guān)測到不同深根生長(cháng)基因型差異,在水梯度下,可觀(guān)測到地上部的生理反應。盡管進(jìn)一步技術(shù)開(kāi)發(fā)和技術(shù)驗證還在進(jìn)行中,半田間設施不失為一種在土壤深層鑒別土壤資源有效利用的根基因差異的新方法。
關(guān)鍵詞: 干旱,微根管,氮元素,表型,根,半田間土壤,水
補充:北京博普特科技有限公司是丹麥Videometer公司中國區總代理,全面負責其系列多光譜成像設備在中國市場(chǎng)的推廣、銷(xiāo)售和售后服務(wù)。
Construction of a large-scale semi-feld facility to study genotypic diferences in deep root growth and resources acquisition
Simon Fiil Svane1*,Christian Sig Jensen2 and Kristian ThorupKristensen1
Abstract
Background: Roots are vital organs for plants, and the efective use of resources from the soil is important for yield stability. However, phenotypic variation in root traits among crop genotypes is mostly unknown and feld screening of root development is costly and labour demanding. As a consequence, new methods are needed to investigate root traits of fully grown crops under feld conditions, particularly roots in the deeper soil horizons.
Results: We developed a new phenotyping facility (RadiMax) for the study of root growth and soil resource acquisi tion under semi-feld conditions. The facility consists of 4 units each covering 400 m2 and containing 150 minirhizo trons, allowing root observation in the 0.4 m–1.8 m or 0.7 m–2.8 m soil depth interval. Roots are observed through minirhizotrons using a multispectral imaging system. Plants are grown in rows perpendicular to a water stress gradi ent created by a multi-depth sub-irrigation system and movable rainout shelters. The water stress gradient allows for a direct link between root observations and the development of stress response in the canopy.
Conclusion: To test the concept and technical features, selected spring barley (Hordeum vulgare L.) c*rs were grown in the system for two seasons. The system enabled genotypic diferences for deep root growth to be observed, and clear aboveground physiological response was also visible along the water stress gradient. Although further technical development and feld validation are ongoing, the semi-feld facility concept ofers novel possibilities for characterising genotypic diferences in the efective use of soil resources in deeper soil layers. Keywords: Drought, Minirhizotron, Nitrogen, Phenotyping, Root, Semi-feld, Soil, Water